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INSTRUCTIONS: 
Standard Items: 	Pens, pencils, drawing templates, eraser 

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks. 

1. 	(6 marks) 

A simple graph is shown below. 

(a) Explain why the graph is simple. 
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(b) Show that the graph satisfies Euler's formula 
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(c) Clearly explain why the graph contains a Hamiltonian path but not a Hamiltonian 
cycle. 	 [2] 
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2. 	(3 marks) 

A graph below shows a network of homes A,B,C,D and E and the edges represent the 
drainpipes connecting their homes. 

(a) What is the degree of C? 	 [1] 

3 
(b) Give one explanation why: 

(i) ABED CEBC is not a trail, 	 [1] 

Edle, 13 E is $repe 

(ii) The graph is semi-Eulerian, 
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3. 	(4 marks) 
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(a) Sketch a connected graph which has two vertices of degree 1 and two vertices of 
degree 2. 
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(b) Is every edge in your graph in part (a) a bridge? Explain. 
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person is given only one task. 

4. 	(5 marks) 

Six people, Andy, Bob, Carl, Dan, Eric, and Fred are to be allocated to six tasks, 1, 2, 3, 4, 5 
and 6. 

The following table shows the tasks that each person can undertake. 

Person Task 
Andy 1,3 
Bob 1,4 
Carl 2,3 
Dan 4, 5, 6 
Eric 2, 5, 6 
Fred 1,3 

(a) 	This information has been represented on a bipartite graph. 
Complete the missing entries for Dan and Eric. 	 [2] 
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(b) 	Each person is to be allocated to only one task and all tasks need to be completed. 

(i) 	Initially Bob is allocated to task 1, Carl to task 3, Dan to task 5 and Eric to task 2. 
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(ii) 	State an allocation where each 
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Explain the problem with this allocation. 
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(a) 	Determine with reasons if the edge PH is a 1
‘
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(d) 

Determine with reasons if this graph contains a semi-Eulerian trail. 
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Determine with reasons which edge you would remove so that this graph forms an 
Eulerian circuit. Give a possible Eulerian circuit. 
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In the space provided below, draw a graph containing the vertices A,P,C and H 
3 edges, all of which are bridges. 
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5. 	(9 marks) 

The graph below shows the network of flights provided by Qantas Link on a given week to the 
Regional mines of Western Australia. 
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Year 12 Mathematics Applications 
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STUDENT'S NAME 

DATE: Thursday 14th  May 	 TIME: 20 minutes 	 MARKS: 21 

INSTRUCTIONS: 
Standard Items: 	Pens, pencils, drawing templates, eraser 
Special Items: 	Three calculators, notes on one side of a single A4 page (these notes to be handed in with this 

assessment) 

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks. 

6. 	(4 marks) 

The local council wants the road works manager to inspect each of the new roads in a section of a 
new development as shown in the diagram below. 

2 

(a) 	Why is it not possible for the manager to inspect all the roads exactly once? Explain. [2] 
r
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(b) A road is to built between two vertices to allow all roads to be inspected exactly once. 

Where should it be built? Indicate clearly on the original diagram above.. 	[1] 
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(c) What is the minimum number of roads that need to be added to the original graph so 
that the inspection can start and end at the same location? 	 [1] 
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7. 	(5 marks) 

The suburb of Kingsford has a skateboard park with seven ramps. 

The ramps are shown as vertices T,U,V,W,X, Y and Z on the graph below. 

The tracks between ramps U and V and between ramps W and X are rough, as shown on the 
graph above. 

(a) 	George begins skating at ramp W and follows an Eulerian trail. He can skate over any 
of the tracks. 

At which ramp does George finish? 	 [1] 
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(b) Frank begins skating at ramp X and follows a Hamiltonian path. The path he chooses 
does not include the two rough tracks. 

Write down a path that Frank could take from start to finish. 	 [2] 

XYT Z v\I 
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(c) Brett wants to complete a Hamiltonian cycle starting from X without traversing the 
rough paths. Is this possible? Explain. 	 [2] 
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8. 	(7 marks) 

The table below shows the distances (km) between the towns to be visited as a part of a 
Geography field trip. 

Bunbury 
(B) 

Yallingup 
(Y) 

Augusta 
(A) 

Dunsborough 
(D) 

Gracetown 
(G) 

Bunbury 87 147 80 101 
Yallingup 87 - - 11 28 
Augusta 147 - - 90 - 

Dunsborough 80 11 90 - 36 
Gracetown 101 28 - 36 - 

(a) 	Using the data shown in the table, complete the weighted graph below for vertex D. [3] 
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(b) 	A Tourist would like to visit all towns once, without travelling any road more than once. 
They are happy to start and finish at different towns. 

(i) Identify the shortest path and state its length. 

A - D Y— 6 —8 
23o vnl 

(ii) What name is given to the route in part (b)? 	 [1] 
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9. 	(5 marks) 

The diagram below shows the graph of the roads surrounding the Education buildings of the 
University of Notre Dame. 

(a) 	Complete the adjacency matrix M below for vertex E. 	 [2] 

ABC 

To 

A 0 1 1 

0 0 1 

From 	AI C 1 2 0 

0 0 1 
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(b) What feature of the matrix indicates it is a directed graph? 	 [1] 
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(c) Using the matrix M 
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To 
ABC DE 

A 1 2 1 1 0 
B 1 2 0 1 0 

From /42  = C 0 1 4 0 2 
D 1 2 0 3 2 
E 0 0 1 1 3 

(i) State the connection which has the greatest number of walks of length 2. 	[1] 

C f.° C 

(ii) The number of walks of length 2 between the vertices D and E starting at either 
vertex. 	 [1] 

,/ 

Page 4 of 4 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

